US009116915B1

a2z United States Patent (10) Patent No.: US 9,116,915 B1
Lakshman et al. 45) Date of Patent: Aug. 25, 2015
(54) INCREMENTAL SCAN 7,788,303 B2* 82010 Mikeselletal. 707/828
7,805,416 B1* 9/2010 Comptonetal. 707/694
. . 7,854,006 B1* 12/2010 Andrussetal. 726/24
(75) Inventors: Nagaraja Mandya Lakshman, 8,055,724 B2* 11/2011 Amegadzieetal. 709/217
Karnataka (IM); Priyank Tiwari, 8,055,850 B2* 11/2011 GUPLA coroorrvrverrreerreeernne, 711/138
Bangalore (IN) 8,087,084 B1* 12/2011 Andruss et al. .. 726124
8,122,507 B1* 2/2012 Andruss etal. 726/24
N . . 8,135,763 B1* 3/2012 Comptonetal. 707/822
(73) Assignee: EMC Corporation, Hopkinton, MA 8170985 B2* 52012 Zimran etal oo 207/600
(Us) 8205261 B1* 62012 Andrussetal. 726/24
8,214,334 B2* 7/2012 Mikeselletal. 707/652
(*) Notice: Subject to any disclaimer, the term of this 8,316,008 B1* 112012 Kohlicccccovvvvrrirnnna 707/711
patent is extended or adjusted under 35 8,339,990 Bl: 12/2012 Tzamaloukas 370/254
U.S.C. 154(b) by 231 days 8375451 B1* 22013 Andrussetal. 726/24
e Y yS- 8,402,544 B1* 3/2013 Soubramanien etal. 726/24
8,443,445 B1* 5/2013 Andrussetal. 726/24
(21) Appl. No.: 13/434,348 8,544,096 B2* 9/2013 Van Brabant 726/24
8,549,220 B2* 10/2013 Beardsley et al. . 711/113
(22) Filed: Mar. 29, 2012 8,739,285 B1* 5/2014 Andruss et al. .. 726/24
2002/0169940 AL* 11/2002 Kylercccoovvvriiirrvvriernrrrn, 712/1
(51) Int.Cl 2005/0149749 Al* 7/2005 Van Brabant 713/200
.CL N
GOGF 17/30 (2006.01) 2006/0182115 AL* 8/2006 .Shah etal. ... 370/395 .4
GO6F 11/14 (2006.01) (Continued)
(52) US.CL Primary Examiner — Jean M Corrielus
cpC ... GOG6F 17/30233 (2013.01); GO6F 11/1435 (74) Attorney, Agent, or Firm — Staniford Tomita LLP
(2013.01); GO6F 17/30212 (2013.01)
(58) Field of Classification Search 67 ABSTRACT
CPC i GOG6F 17/30233; GOGF 17/30221; This disclosure relates to a method, article of manufacture,
GO6F 17/30212; GO6F 11/1435 and apparatus for scanning data. In some embodiments, this
USPC ... 707/201, 609, 694, 652, 828, 711, 805;

(56)

709/217, 711/13; 726/24

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,005,415
5,402,532
7,246,142
7,546,432
7,599,971
7,603,397
7,640,406
7,783,615
7,788,298

A *
A *
B2 *
B2 *
BL*
BL*
BL*
BL*
B2 *

1/1977
3/1995
7/2007
6/2009
10/2009
10/2009
12/2009
8/2010
8/2010

Kossiakoffetal. 342/90
Epstein et al. 345/422
Sexton etal.ccoeiinn. /1
Stacey et al. 711/165
Hagerstrom et al. 1
Hagerstrom et al. 1
Hagerstrom et al. 711/159
Compton et al. 707/694
Choetal. ..o 707/805

Obtaining
afle?

includes examining attributes of a first directory, wherein the
attributes include at least one from a group comprising a next

tentative scan

date, a modified time, and a dirty indicator,

determining if the dirty indicator has been set, if the dirty has
been set, scanning files in the first directory, if the dirty
indicator has not been set, determining if the first directory
has been modified, if the first directory has not been modified,
determining if the next tentative scan date equals to a system
date, if the next tentative scan date equals to the system date,
scanning the files, if the next tentative scan date does not
equal to the system date, examining attributes of a second
directory, and if the first directory has been modified, scan-

ning the files.

35

Reading fle
attributes and
extended attributes

Storing
NextTentativeScanDate
360 Evaluating against
palicies
Storing system -
directory modiied - 325
to ModiifiedTime Closing the file

365

Indlicate
directory
dirty

335

File next scan date
eariier than
NextTentativeScanDate

Setting
NextTentativeScanDate to

file next scan date -

11 Claims, 3 Drawing Sheets

355

US 9,116,915 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2006/0212746 Al* 9/2006 Amegadzieetal. 714/6
2007/0094269 Al* 4/2007 Mikesell etal. 707/10
2007/0179990 Al* 82007 Zimranetal. .. . 707/201

2007/0266056 Al* 11/2007
2007/0288527 Al* 12/2007

2008/0104129 Al*
2009/0094698 Al*
2010/0121828 Al*

* cited by examiner

5/2008
4/2009
5/2010

Stacey et al.c...... 707/203
Chang et al. 707/200
Chang etal. 707/200
Nichols etal. 726/24
Wang ... 707/694

U.S. Patent Aug. 25, 2015 Sheet 1 of 3 US 9,116,915 B1

10

100 /‘

Primary Storage

_____________________ 122
120 i Standard Attributes |
ya i ! 124
Directory A ---=="""""""_ i Extended Attributes i/
/‘ 130 | | oo
File A Stub

(x 110

/_14
File B Stub \
\ Secondary Storage

N -
R

170
/_180 \
File C
File

Directory B
/ 150
A

160
‘-/-

File B

N

FIG. 1

U.S. Patent Aug. 25, 2015 Sheet 2 of 3 US 9,116,915 B1

Obtaining a
directory?

No

Examining directory attributes
and extended attributes

Dirty
indicator set?

Yes

Directory
modified?

NextTentativeScanDate
is less than or equals to
the current system date?

Scanning files in the directory

260

End

FIG. 2

U.S. Patent Aug. 25, 2015 Sheet 3 of 3 US 9,116,915 B1

Obtaining Yes : :
a file? > Opening the file \
¢ 315
310 Reading file
attributes and
Storing extended attributes \
NextTentativeScanDate \ 3 320
360 Evaluating against
i policies
Storing system . \
directory modified - : 305
to ModifiedTime | "\ Closing the file
365 R
335
A Indicate Any
End directory exceptions?
dirty
o 340
370

Performing file migration
related tasks

File next scan date
earlier than
NextTentativeScanDate

No

Setting
NextTentativeScanDate to

file next scan date \

355

FIG. 3

US 9,116,915 Bl

1
INCREMENTAL SCAN

FIELD

The present invention relates generally to data systems and
specifically to systems and methods of efficient data scanning
during a migration.

BACKGROUND

File migration from primary storage to relatively low cost
secondary storage is common in order to achieve cost effec-
tiveness of storage systems. The process of file migration
often involves identitying files that have met criteria specified
in user defined policies.

For example, some criteria of a file migration policy may
indicate that if a file is not accessed within a specific time
frame, then the file is moved to a secondary storage. A moti-
vating factor for employing such an age-based migration
policy may be to remove less frequently accessed data in
order to free up primary storage. When implementing a
migration policy, checks of file attributes must be performed
to determine whether a file meets or does not meet certain
criteria specified in a migration policy. Such checks of file
attributes and comparisons of multiple user defined migration
policies against each file can be costly. Especially as storage
systems grow large, a scan of the entire primary storage to
retrieve a large number of files and read the attributes may
become prohibitively time consuming and resource draining.

There is a need, therefore, for an improved method or
system that would permit efficient analysis of files for migra-
tion purposes, without adversely affecting storage systems
performance or over taxing storage systems resources.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be readily understood by the
following detailed description in conjunction with the accom-
panying drawings, wherein like reference numerals designate
like structural elements, and in which:

FIG. 1 is a diagram of a data storage system in accordance
with some embodiments.

FIG. 2 is a diagram of the logical interaction within a data
storage system in accordance with some embodiments.

FIG. 3 is a flow chart illustrating a method to scanning data
in accordance with some embodiments.

DETAILED DESCRIPTION

A detailed description of one or more embodiments of the
invention is provided below along with accompanying figures
that illustrate the principles of the invention. While the inven-
tion is described in conjunction with such embodiment(s), it
should be understood that the invention is not limited to any
one embodiment. On the contrary, the scope of the invention
is limited only by the claims and the invention encompasses
numerous alternatives, modifications, and equivalents. For
the purpose of example, numerous specific details are set
forth in the following description in order to provide a thor-
ough understanding of the present invention. These details are
provided for the purpose of example, and the present inven-
tion may be practiced according to the claims without some or
all of these specific details. For the purpose of clarity, tech-
nical material that is known in the technical fields related to
the invention has not been described in detail so that the
present invention is not unnecessarily obscured.

10

15

20

25

30

35

40

45

50

55

60

65

2

It should be appreciated that the present invention can be
implemented in numerous ways, including as a process, an
apparatus, a system, a device, a method, or a computer-read-
able medium such as a computer-readable storage medium
containing computer-readable instructions or computer pro-
gram code, or as a computer program product, comprising a
computer-usable medium having a computer-readable pro-
gram code embodied therein. In the context of this disclosure,
a computer-usable medium or computer-readable medium
may be any medium that can contain or store the program for
use by or in connection with the instruction execution system,
apparatus or device. For example, the computer-readable
storage medium or computer-usable medium may be, but is
not limited to, a random access memory (RAM), read-only
memory (ROM), or a persistent store, such as a mass storage
device, hard drives, CDROM, DVDROM, tape, erasable pro-
grammable read-only memory (EPROM or flash memory), or
any magnetic, electromagnetic, infrared, optical, or electrical
means or system, apparatus or device for storing information.
Alternatively or additionally, the computer-readable storage
medium or computer-usable medium may be any combina-
tion of these devices or even paper or another suitable
medium upon which the program code is printed, as the
program code can be eclectronically captured, via, for
instance, optical scanning of the paper or other medium, then
compiled, interpreted, or otherwise processed in a suitable
manner, if necessary, and then stored in a computer memory.
Applications, software programs or computer-readable
instructions may be referred to as components or modules.
Applications may be hardwired or hard coded in hardware or
take the form of software executing on a general purpose
computer or be hardwired or hard coded in hardware such that
when the software is loaded into and/or executed by the
computer, the computer becomes an apparatus for practicing
the invention. Applications may also be downloaded, in
whole or in part, through the use of a software development
kit or toolkit that enables the creation and implementation of
the present invention. In this specification, these implemen-
tations, or any other form that the invention may take, may be
referred to as techniques. In general, the order of the steps of
disclosed processes may be altered within the scope of the
invention.

An embodiment of the invention will be described with
reference to a data system configured to store files, but it
should be understood that the principles of the invention are
not limited to data systems. Rather, they are applicable to any
system capable of storing and handling various types of
objects, in analog, digital, or other form. Although terms such
as document, file, object, etc. may be used by way of example,
the principles of the invention are not limited to any particular
form of representing and storing data or other information;
rather, they are equally applicable to any object capable of
representing information.

Disclosed herein are methods and systems to efficiently
manage file migration in data storage. Conventional methods
to manage data storage include migrating infrequently
accessed files to appropriate storage systems according to
user defined policies. This kind of file migration between
different storage systems is generally known as policy-based
file migration.

User defined policies may be based on file attributes
including last access date, file size, file type, or file owner
among other. Flexible policy choices may also enable a user
to include or exclude files whose attributes meet certain cri-
teria. For example, a user may specify file types such as .txt,
.pdf; or .doc to be migrated, and/or any files larger than 10 MB
in size not to be migrated, and/or any files older than 5 days to

US 9,116,915 Bl

3

be migrated. In addition to defining policies based on file
attributes, policies may also be defined based on directory
attributes. An example of a policy-based file migration appli-
cation is DiskXtender, a product available from EMC Corpo-
ration.

When a migration policy is based on the creation or last
modification date and/or time of a file, such policy is an
age-based policy. Age-based policies may be configured to
meet regulatory requirements and/or to lower cost of owner-
ship. For example, during the first few days of a file creation,
the file may be accessed frequently. After a while, the file may
not be accessed as frequently. In some cases, the file may only
need to be accessed once in a few years. Instead of leaving an
inactive file on relatively expensive primary storage claiming
space, an age-based policy may be defined to accommodate
the move of the file to a relatively low cost secondary storage
after the first few days of its creation. In case of regulatory
requirements of retaining certain files for a specific period, an
age-based policy may also be defined to identify and migrate
these files to a safe and secure secondary storage.

In order to determine which files may qualify for migration
according to user defined policies, a scanning process may be
necessary to match policies with file attributes. The scanning
process may be configured to run periodically or may start by
a user manually. During a scan, files may be opened. The file
attributes may then be read and compared with user defined
policies. If there is a match between the file attributes and a
policy, migration related tasks may be performed on the file.
Since file operations such as opening and closing may be time
consuming and may impose constraints on system resources,
the scanning process may also run in the background and/or
during off peak hours to be less disruptive.

In some embodiments of the present invention, an efficient
incremental scan may be used to improve the efficiency of the
scanning process, as shown in FIG. 1. FIG. 1 illustrates an
exemplary storage system 10 containing Primary Storage 100
and Secondary Storage 110. Primary Storage 100 may con-
tain Directory A 120 and Directory B 170. Directory A 130
main contain File A 150 and File B 160. Directory B 170 may
contain File C 180. Directories in storage system 10 in some
embodiments may have Extended Attributes 124 in addition
to Standard Attributes 122 generated by various operating
systems. Extended Attributes 124 may contain fields to indi-
cate whether a directory has files that need to be scanned.

Though FIG. 1 depicts only one Primary Storage 100 and
one Secondary Storage 110, storage system 10 may include
multiple storage devices. Primary Storage 100 and Secondary
Storage 110 each in turn may include one or more disks, with
each disk containing a different portion of data stored on
Primary Storage 100 and/or Secondary Storage 110. The
storage space in Primary Storage 100 and/or Secondary Stor-
age 110 may also be apportioned pursuant to a file system, or
may belogical or virtual (i.e. not corresponding to underlying
physical storage) or may be subdivided into a plurality of
volumes or logical devices. The logical devices may or may
not correspond to the physical storage space of the disks.
Thus, for example, a physical storage device may contain a
plurality of logical devices or, alternatively, a single logical
device could span across multiple physical devices.

Primary Storage 100 and/or Secondary Storage 110 may be
configured to access any combination of logical devices inde-
pendent of the actual correspondence between the logical
devices and the physical devices. Secondary Storage 110 may
be provided as a stand-alone device coupled relatively
directly to Primary Storage 100 or, alternatively, Secondary
Storage 110 may be part of a storage area network that
includes a plurality of other storage devices as well as routers,

20

25

35

4

network connections, etc. The system described herein may
be implemented using software, hardware, and/or a combi-
nation of software and hardware where software may be
stored in an appropriate storage medium and executed by one
Of More Processors.

During a migration based on user defined policies in accor-
dance with some embodiments, files may be moved from
Primary Storage 100 to the relatively less expensive Second-
ary Storage 110. Following the migration, files in Primary
Storage 100 may be replaced with relatively small sized stubs,
which may contain attributes of the files and point to the
location of files stored on Secondary Storage 160. For
example, File A Stub 130 may be placed in Directory A 120
and may point to File A 150 on Secondary Storage 110.
Similarly, File B Stub 140 may be placed in Directory A 120
and may point to File B 160 on Secondary Storage 110. When
a user needs to access these already migrated files, the stubs
such as File A Stub 130 and File B Stub 140 may be used to
locate File A 150 and File B 160 on Secondary Storage 110.

In the exemplary storage system 10, File A Stub 130 and
File B Stub 140 may have been inactive for a while since a
previous scan. File C 180 may be created in Directory B 170
after a previous scan. Conventional scanning methods may
still open all three files and examine the file attributes before
determine that only File C 180 may qualify for an age-based
migration. Due to the unnecessary file operations such as file
opening, file attributes examining, and file closing, these con-
ventional methods may be too resource intensive or time
consuming. The enhanced techniques described herein utilize
Extended Attributes 124 determine whether a directory may
contain files that need to be scanned. By checking Extended
Attributes 124 of a directory prior to performing expensive
file operations on files located in the directory, the current
invention reduces the amount of unnecessary file operations
and improves efficiency of the scanning process to facilitate
file migration.

A directory’s extended attribute structure in accordance
with some embodiments may be as follows:
typedef struct_ FOLDER_MIGRATION_INFO

20 {

45

55

DWORD Version; //Extended attributes version

FILETIME NextTentativeScanDate; //Next tentative scan
date of the directory

FILETIME ModifiedTime; //Directory last modified time

DWORD Dirty; //Specifies that a directory is dirty

DWORD Reserverd[4]; //Reserved for future use
} FOLDER_MIGRATION_INFO, *PFOLDER_MIGRA-
TION_INFO;

Version in the above structure may contain a version num-
ber of the structure. This field may be used to maintain com-
patibilities across different versions of the software. NextTen-
tativeScanDate may track next tentative or likely scan date of
the directory. Dirty may indicate that the directory contains
files that need to be scanned. Triggering events of the Dirty
indicator may include raising exceptions during a scan. Dirty
indicator may also be used as a workaround for unexpected
behaviors during the scanning process.

ModifiedTime in the above structure may record last modi-
fied time of the directory after scanning the directory. In some
operating systems, a directory may have Standard Attributes
132 such as name, path, and/or a system directory modified
time among others. If a directory is changed after a previous
scan due to activities such as adding a new file or modifying
afile in the directory, the system directory modified time may
change and differ from the ModifiedTime. The difference in
ModifiedTime may indicate that a file scanning in the direc-
tory is necessary.

US 9,116,915 Bl

5

FIG. 2 illustrates an incremental scan in accordance with
some embodiments. In step 210, the scanning process may
first read a directory from Primary Storage 100. If the direc-
tory reading in step 210 is successful, the directory’s standard
attributes and extended attributes may be examined in step
220. On the other hand, if the scanning process cannot obtain
a directory in step 210, the incremental scan may end.

After examining the attributes and extended attributes of
the directory in step 220, the scanning process may determine
if the Dirty field in the extended attribute structure has been
set in step 230. Dirty may indicate that the directory contains
files that need to be scanned. Triggering events of the Dirty
indicator may include raising exceptions during a scan. Dirty
indicator may also be used as a workaround for unexpected
behaviors during the scan. Upon a determination that the
Dirty indicator has been set, files in the directory may be
scanned in step 260. On the other hand, if Dirty indicator has
not been set, the incremental scan may need to further analyze
ModifiedTime and NextTentativeScanDate to determine if
files in the directory need to be scanned.

In step 240, ModifiedTime field in the extended attribute
structure may be compared with a system directory modified
time to determine if the directory has been modified since a
previous scan. In some embodiments, at the end of a scan of
a directory, the system directory modified time may be
recorded to ModifiedTime. In some operating systems,
changes such as adding a new file to a directory or making
changes to a file in a directory may impact the system direc-
tory modified time. As a result, if changes have been made to
files in a directory since a previous scan, the system directory
modified time may be difference from the value recorded in
ModifiedTime. A detection of the difference may lead to step
260, a scan of files in the directory. On the other hand, if the
directory has not changed since a previous scan, the incre-
mental scan may need to further analyze NextTentativeScan-
Date to determine if files in the directory need to be scanned.

In step 250, the directory’s Next TentativeScanDate may be
compared with a current system date. If the NextTentativeS-
canDate is less than or equals to the current system date, files
in the may be due for migration related tasks. Consequently,
scanning files in the directory in step 260 may be necessary.
On the other hand, if the incremental scan determines that the
Dirty indicator is not set, the directory has not been modified
since a previous scan, and the directory does not qualify for
any user defined policy, the incremental scan may efficiently
skip scanning files in the directory.

FIG. 3 illustrates one embodiment of a flowchart of opera-
tions for performing file scanning within a qualifying direc-
tory. Scanning files in a qualifying directory serve the purpose
of determining which files may qualify for migration based
on user defined policies. In addition, the file scanning process
may also set directory extended attributes such as NextTen-
tativeScanDate, Dirty and ModifiedTime. The directory
extended attributes may then be used during next incremental
scan of directories as illustrated in FIG. 2 to determine if a
directory may contain qualifying files and need to be scanned.

In step 310, a file may be obtained for scanning. If the end
of the directory is reached, directory extended attributes
NextTentativeScanDate and ModifiedTime may be stored in
step 360 and 365. Upon successtully obtaining the file, the file
may be opened in step 315, and standard file attributes as well
as extended attributes may be read in step 320. Similar to a
directory, in some operating systems, a file may have standard
attributes such as name, path, and/or a system file modified
time among others. To facilitate migration related tasks, in
some embodiments, a file may also be associated with file
extended attributes to track information such as retention

10

15

20

25

30

35

40

45

50

55

60

65

6

period and next scan date among others. During the file scan-
ning process, in order to determine whether the file may
qualify for any policy-based migration, an evaluation of file
attributes as well as extended attributes may be performed in
step 325 against user defined policies.

For example, a user defined policy may require migrating
all the .txt files that are at least 7 days old. On June 1st, file
1.txt may be created in directory A. Evaluating 1.txt against
the policy, the file scanning process may determine that 1.txt
has the matching attribute of file type .txt. The file scanning
process may further determine that according the policy,
since 1.txt was created on June 1st, the next scan date for
migration related tasks may be June 7th. Upon completion of
afile evaluation in step 325, the file may be closed in step 335.
In case of any exceptions raised during file opening, evalua-
tion and closing, the Dirty indicator may be set in step 370.
Once the Dirty indicator is set, the file scanning process in the
directory may end to avoid unnecessary further scanning of
other files in the same directory.

Having evaluated the file attributes and/or extended
attributes without exception, in step 345, migration related
tasks may be performed based on the evaluation result.
Migration related tasks may include move, purge, and/or
delete among others. For example, some files may qualify for
criteria in a move policy, be written to a move list, and be
moved later. A move list may contain file path as well as the
move destination device information. Similarly, some files
may qualify for criteria in a purge policy and may be written
to a purge list to be purged later. A purge list may contain file
path information. Some files may qualify for criteria in a
delete policy and may be deleted. Yet other files may qualify
for criteria in an index policy and may be written to an index
transaction log.

Upon completion of performing migration related tasks, in
step 350, directory’s NextTentativeScanDate may be com-
pared with the file’s next scan date obtained during the evalu-
ation step 325. The comparison may resultin setting an earlier
date to NextTentativeScanDate. When the end of the direc-
tory is reached, all the comparisons performed during the file
scanning in the directory may result in having the earliest next
scan date among all the files in the directory to NextTenta-
tiveScanDate.

For example, a user may define policies as follows.
Policy 1: migrate all the .txt files that are 7 days old.

Policy 2: migrate all the .rtf files that are 5 days old
Policy 3: migrate all the .doc files that are 3 days old.

On June 1, directory A may contain three newly created
files, 1.txt, 2.rtf, and 3.doc. After the evaluation step in 325,
based on Policy 1, 1.txt may have a next scan date of June 7.
Similarly, 2.rtf may have a next scan date of June 5 based on
Policy 2, and 3.doc may have a next tentative scan date of June
3 based on Policy 3 respectively. In step 350, directory A’s
NextTentativeScanDate may be first compared with June 7,
the next scan date of file 1.txt. In case the directory’s Next-
TentativeScanDate is not as recent as June 7, the directory’s
NextTentativeScanDate may be set to the June 7 in step 355.
Subsequently, NextTentativeScanDate may be compared
with and set to the next scan date of 2.rft and 3.doc. After
scanning all the files in directory A, June 3 may be the value
stored as NextTentativeScanDate in step 360, since June 3 is
the earliest next scan date among files 1.txt, 2.rtf, and 3.doc.

In some embodiments, incremental scan may be used in
conjunction with a full scan of all files following the steps
illustrated in FIG. 3. During the full scan, the next scan date of
each file may be determined based on user defined policies.
When file scanning process as illustrated in FIG. 3 reaches the
end of each directory, the directory extended attributes such

US 9,116,915 Bl

7

as NextTentativeScanDate, Dirty and ModifiedTime among
others may be set. Following a full scan, each directory may
have extended attributes ready to provide a user the option of
running an incremental scan. The efficient incremental scan
may then pick a directory and evaluate its extended attributes
to determine if files in the directory may be further scanned.
In case of a qualifying directory, the files in the directory may
be processed following the steps as illustrated in FIG. 3.
During this file scanning process again, directory extended
attributes such as NextTentativeScanDate, ModifiedTime and
Dirty may be calculated and updated.

Using incremental scan to facilitate migration has the ben-
efit of reducing the number of expensive file operations. Con-
ventional scanning methods to facilitate migration may be
time consuming due to unnecessary file opening and attribute
checking of infrequently accessed files. For example, an age-
based policy may require migrating files that are older than
five days after its creation. A file 1.txt is created on day 1.
During a scan on day 2, 1.txt would not qualify for migration
since the file is only one day old. Similarly, 1.txt would not
qualify for migration on day 3-5. Not until day 6, 1.txt may
qualify for the age-based migration policy. Any file opera-
tions to match the file attributes with policies prior to day 6
may be redundant and may consume unnecessary system
resources. The enhanced techniques described, in some
embodiments, make use of a directory extended attributes
check prior to performing expensive file operations.

During an incremental scan, directories that do not contain
qualifying files may be skipped altogether for scanning. The
benefit of incremental scanning is more obvious as data sets
grow larger. In particular, for the customers having large data
sets, the data modification rate may be only a fraction of the
overall data. As a result, the modified directories containing
modified data may also be a small fraction within the overall
directory structure. When only a fraction of the directories
containing data sets qualified for scanning, the enhanced
techniques described may avoid the expensive file operations
and improve the efficiency significantly.

For the sake of clarity, the processes and methods herein
have been illustrated with a specific flow, but it should be
understood that other sequences may be possible and that
some may be performed in parallel, without departing from
the spirit of the invention. Additionally, steps may be subdi-
vided or combined. As disclosed herein, software written in
accordance with the present invention may be stored in some
form of computer-readable medium, such as memory or CD-
ROM, or transmitted over a network, and executed by a pro-
Cessor.

All references cited herein are intended to be incorporated
by reference. Although the present invention has been
described above in terms of specific embodiments, it is antici-
pated that alterations and modifications to this invention will
no doubt become apparent to those skilled in the art and may
be practiced within the scope and equivalents of the appended
claims. More than one computer may be used, such as by
using multiple computers in a parallel or load-sharing
arrangement or distributing tasks across multiple computers
such that, as a whole, they perform the functions of the com-
ponents identified herein; i.e. they take the place of a single
computer. Various functions described above may be per-
formed by a single process or groups of processes, on a single
computer or distributed over several computers. Processes
may invoke other processes to handle certain tasks. A single
storage device may be used, or several may be used to take the
place of a single storage device. The present embodiments are
to be considered as illustrative and not restrictive, and the
invention is not to be limited to the details given herein. It is

10

15

20

25

30

35

40

45

50

55

60

65

8

therefore intended that the disclosure and following claims be
interpreted as covering all such alterations and modifications
as fall within the true spirit and scope of the invention.

What is claimed is:
1. A method for incrementally scanning data, comprising:
defining, for a first directory containing files, an extended
attribute structure having a plurality of fields storing
attributes related to modification of the files;
after a previous scan to set attributes in the extended
attribute structure including a next tentative scan date, a
modified time, and a dirty indicator indicating an excep-
tion happened during the previous scan and providing a
workaround for unexpected behavior of the previous
scan, examining during the incremental scan the
attributes of the first directory;
determining if the dirty indicator has been set, the dirty
indicator contained in a field of the extended attribute
structure;
if the dirty indicator has been set, scanning the files in the
first directory;
if the dirty indicator has not been set, determining if the
first directory has been modified;
if the first directory has not been modified, determining
if the next tentative scan date equals to a system date;
if the next tentative scan date equals to the system
date, scanning the files;
if the next tentative scan date does not equal to the
system date, examining attributes of a second
directory; and
if the first directory has been modified, scanning the files
in the first directory.
2. The method as recited in claim 1, wherein scanning the
files includes
opening a first file of the files;
reading file attributes of the first file from the extended
attribute structure;
evaluating the file attributes based on at least one policy;
closing the first file;
determining if an exception has taken place;
if the exception has taken place, setting the dirty indicator;
if no exception has taken place, performing a migration of
the first file based on the at least one policy;
comparing the next tentative scan date with a scan date of
the first file; and
in the event that the next tentative scan date is not as recent
as the scan date of the first file, setting the next tentative
scan date to the scan date of the first file.
3. The method as recited in claim 2, wherein opening a first
file of the files includes
determining if an end of the first directory has been
reached;
based on the determination that the end of the first directory
has been reached, updating the attributes;
based on the determination that the end of the directory has
not been reached, opening a second file of the files;
reading file attributes of the second file; evaluating the
file attributes based on a policy; closing the second file;
determining if an exception has taken place; if the excep-
tion has taken place, setting the dirty indicator; if no
exception has taken place, performing a migration of the
second file based on the policy; and calculating the next
tentative scan date.
4. The method as recited in claim 3, wherein updating the
attributes includes
storing the next tentative scan date in another field of the
extended attribute structure; and

US 9,116,915 Bl

9

storing a system directory modified time to the modified
time in yet another field of the extended attribute struc-
ture.

5. The method as recited in claim 2, wherein the at least one
policy includes at least one file age-based policy.

6. The method of claim 2, wherein the previous scan is a
full scan of the files to set the attributes.

7. The method as recited in claim 1, wherein determining if
the first directory has been modified includes

comparing the modified time with a system directory

modified time;

in the event that the modified time is not the same as the

system directory modified time, indicating the first
directory has been modified; and

in the event that the modified time is the same as the system

directory modified time, indicating the first directory has
not been modified.

8. The method of claim 1 wherein the extended attribute
structure comprises a plurality of fields storing respective
attributes related to a time or status of modification of at least
some of the files in the first directory.

9. The method of claim 8 wherein the extended attribute
structure of the first directory is checked prior to performing
any file operations on the files to determine whether the first
directory contains files that need to be scanned.

10. A system for incrementally scanning data, comprising:
a processor configured to

define, for a first directory containing files, an extended

attribute structure having a plurality of fields storing
attributes related to modification of the files;

after a previous scan to set attributes in the extended

attribute structure including a next tentative scan date, a
modified time, and a dirty indicator indicating an excep-
tion happened during the previous scan and providing a
workaround for unexpected behavior of the previous
scan, examine during the incremental scan the attributes
of'the first directory;

determine if the dirty indicator has been set, the dirty

indicator contained in a field of the extended attribute
structure;

if the dirty indicator has been set, scan the files in the first

directory;

10

20

25

30

35

40

10

if the dirty indicator has not been set, determine if the first
directory has been modified;
if the first directory has not been modified, determine if
the next tentative scan date equals to a system date;
if the next tentative scan date equals to the system
date, scan the files;
if the next tentative scan date does not equal to the
system date, examine attributes of a second direc-
tory; and
if the first directory has been modified, scanning the files
in the first directory.

11. A computer program product for incrementally scan-
ning data, comprising a non-transitory computer usable
medium having machine readable code embodied therein for:

defining, for a first directory containing files, an extended

attribute structure having a plurality of fields storing
attributes related to modification of the files;

after a previous scan to set attributes in the extended

attribute structure including a next tentative scan date, a
modified time, and a dirty indicator indicating an excep-
tion happened during the previous scan and providing a
workaround for unexpected behavior of the previous
scan, examining during the incremental scan the
attributes of the first directory;

determining if the dirty indicator has been set, the dirty

indicator contained in a field of the extended attribute
structure;

if the dirty indicator has been set, scanning the files in the

first directory;

if the dirty indicator has not been set, determining if the

first directory has been modified;
if the first directory has not been modified, determining
if the next tentative scan date equals to a system date;
if the next tentative scan date equals to the system
date, scanning the files;
if the next tentative scan date does not equal to the
system date, examining attributes of a second
directory; and
if the first directory has been modified, scanning the files
in the first directory.

#* #* #* #* #*

